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ABSTRACT

Sensitivity to surrounding circumstances is essential for the safety of mountain scrambling. In this 
paper, the authors present a smart helmet prototype equipped with visual SLAM (simultaneous 
localization and mapping) and barometer multi-sensor fusion (MSF), IMU (inertial measurement 
unit), omnidirectional camera, and global navigation satellite system (GNSS). They equipped the 
helmet framework with SLAM to produce 3D semi-dense pointcloud environment maps, which are 
then discretized into grids. Then, the novel danger metrics they proposed were calculated for each 
grid based on surface normal analysis. The A* algorithm was applied to generate safe and reliable 
paths based on minimizing the danger score. This proposed helmet system demonstrated robust 
performance in mapping mountain environments and planning safe, efficient traversal paths for 
climbers navigating treacherous mountain landscapes.
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INTRodUCTIoN

Mountain scrambling, often called alpine scrambling, is a recreational sport that entails ascending 
mountain peaks and ridges while sometimes employing one’s hands to scale rock walls and navigate 
challenging terrain (Whymper, 1871). While less technical than rock climbing, scrambling can still be 
quite dangerous, given the exposure to heights and objective hazards. Some of the potential dangers 
of mountain scrambling include falling from narrow ledges and cliffs; rockfall when climbing steep 
rock faces, with loose rocks potentially dislodged onto climbers below; rapid weather changes like 
rain, wind, and lightning (which can lead to slippery conditions, loss of visibility and hypothermia); 
getting lost due to lack of distinctive landmarks in mountainous terrain; and exposure to altitude 
sickness, sunburn, dehydration, and cold weather injuries due to the high altitude environment.
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The underlying mountaineering severity can lead to tragic consequences. Analysis of The 
International Alpine Trauma Registry (IATR) data reveals that out of 306 recorded mountain accidents 
resulting in multisystem trauma, the majority were due to falls onto solid ground (51.4%), followed by 
falls in snowfields (10.8%), falls into crevasses (8.1%), and being struck by stones (5.4%). In 24.3% 
of cases, the cause was unknown (Rauch et al., 2019). These examples remind us of the dangers 
climbers who venture onto precipitous terrain face. The field would benefit from continued efforts 
to improve safety protocols and leverage technological innovations to mitigate the risks inherent to 
these physically and mentally demanding sports.

In this regard, a novel helmet prototype has been invented that presents a viable solution by 
alerting individuals through a loudspeaker about potential hazards and suggesting the safest route 
while minimizing travel time. The equipped SLAM technology offers a revolutionary approach to 
managing the objective risks inherent in mountaineering through the collaborative integration of 
multiple sensors. At the same time, the Multi-Sensor Fusion (MSF) has great promise to address the 
limitations of SLAM systems alone for enhanced precision and reliability. This helmet showcases the 
ability to use real-time data from the surrounding environment to show the best route to the destination.

ReLATed woRK

Throughout human history, helmets have played a crucial role in safeguarding the lives of individuals 
facing dangerous environments and challenges. From ancient civilizations to the present day, the 
evolution of helmet technology has been driven by a relentless pursuit of safety and protection. 
In the early days, helmets were forged from basic materials such as leather and bronze. Warriors 
and adventurers wore them to guard against head injuries in combat and dangerous terrain. As the 
centuries passed, helmet design and materials advanced, incorporating iron, steel, and carbon fiber. 
These improvements significantly enhanced protective capabilities, but the helmet is still primarily 
focused on protecting against physical impacts.

The rise in amateur mountaineers has increased the risk of fatal accidents, necessitating advanced 
safety equipment. In the 21st century, mountaineers face numerous environmental and navigational 
hazards, requiring protection beyond physical impacts. Helmets equipped with computer vision and 
guidance capabilities are essential, aiding in decision-making under extreme conditions and ensuring 
safer, less strenuous routes, especially in altitude sickness and hypothermia cases.

A principal method used in our helmet framework is Simultaneous Localization and Mapping 
(Durrant‐Whyte & Bailey, 2006; Engel et al., 2018), which is widely used to enable a robot or 
autonomous vehicle to construct a map of an unfamiliar environment while simultaneously recognizing 
its position in that environment. The recent advancement in 3D map reconstruction (Grisetti et al., 
2010) and SLAM (Ebadi et al., 2022b) not enable robots to precisely positioning and make autonomous 
decisions in a scalable approach (Kohlbrecher et al., 2011) that can be applied to extreme environments.

This technique facilitates the helmet system in navigating through intricate and unexplored areas by 
continuously updating its spatial awareness. By utilizing Simultaneous Localization and Mapping for 
generating detailed 3D terrain mapping and recognizing cliffs, edges, and overhangs, scramblers could 
more effectively evaluate potential risks of falling or rockfall and choose paths that are less exposed.

Moreover, another primary function of SLAM systems is to map surroundings while locating 
oneself, which makes this technology highly suitable for mitigating disorientation. Since the 
lack of noticeable reference points within rugged mountainous settings can frequently result in 
hikers becoming disoriented, the utilization of precise, up-to-date positioning technology within 
a constantly evolving diagram of the mountains could significantly enhance understanding of the 
current situation and lower the incidence of unintentional deviations from the intended path. A 
few Simultaneous Localization and Mapping (SLAM) algorithms have integrated supplementary 
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data like weather patterns in their cartography protocols (Hong et al., 2020). Combining 
meteorological knowledge with topographical maps presents an opportunity to identify locations 
of shelter or alternate routes with less susceptibility to unfavorable weather patterns. Such data 
would significantly mitigate risks associated with precipitation, wind, and lightning strikes while 
undertaking demanding expeditions.

Though SLAM’s capabilities show immense promise in enhancing mountain scrambling safety, 
relying solely on SLAM for localization and mapping during mountain scrambling has limitations, 
as the algorithm can accumulate errors over time, leading to imprecision and posing uncertainty. 
Therefore, in this case, we have incorporated sensors such as GNSS, IMU, and barometer to perform 
the MSF algorithm to ultimately obtain a more accurate, reliable, and stable position and orientation 
estimation. This is where MSF (Luo et al., 2002) can complement SLAM to create more robust and 
resilient systems for practical use in unpredictable real-world alpine environments.

In MSF, data from multiple heterogeneous sensors are combined using intelligent algorithms 
to leverage the strengths and mitigate the weaknesses of each sensory modality. For instance, 
visual SLAM may be fused with inertial measurement units (IMUs) containing accelerometers 
and gyroscopes. While visual SLAM is prone to drift, IMU inputs can provide short-term motion 
constraints to correct and bind these errors. However, IMUs alone are inaccurate over longer durations 
due to integration drift. Fusing the two modalities creates a system more reliable than either sensor 
in isolation. Additionally, other complementary sensors can be integrated, such as LIDAR for long-
range mapping, GNSS (Global Navigation Satellite System) (Kaplan & Hegarty, 2017; Zaliva & 
Franchetti, 2014) coupling SLAM with this array of proprioceptive and exteroceptive sensors through 
MSF provides multi-faceted observations of the environment to overcome the weaknesses of any 
individual sensor channel. This leads to greater accuracy and resilience for localization and mapping 
in challenging mountainous terrain.

Furthermore, MSF also enables redundancy and cross-validation between sensor streams. When 
one modality is compromised, such as loss of visual tracking, others may be able to provide continuity 
and observe environmental constraints until the degraded signal recovers. This fail-soft characteristic 
is essential for robustness in safety-critical mountain scrambling.

Table 1. Comparative analysis of smart helmets

Causes of Injuries Strengths Problems

Skully AR-1
- Augmented reality HUD 
- Rearview camera 
- GPS navigation

-Reliability issues 
- Software bugs 
- High cost

DAQRI Smart Helmet
- Integrated visor display 
- Sensors for AR applications 
- Safety features

- High price 
- Limited battery life 
- Customized software development required

CrossHelmet X1
- Rearview camera 
- Voice control 
- Companion app support

- High price 
- Comfort and fit concerns 
- Helmet weight

Forcite Alpine Smart Helmet - Built-in cameras 
- Communication capabilities

- Limited battery life in extreme cold conditions 
- Durability concerns

Livall BH60SE
- Integrated LED lights 
- Turn signal indicators 
- Bluetooth connectivity

- Limited device compatibility 
- Potential challenges with firmware updates

Note: The smart helmets listed in this table were all launched from 2016 to 2019. The features and limitations of various smart helmet models are out-
lined, highlighting the common issues of high cost and lack of intelligent decision-making. Our helmet framework is equipped with visual SLAM technology, 
ensuring a robust and economical solution scalable for mass production.
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MeTHodoLoGy

The core functionality of the helmet (Figure 1) is provided by 360-degree cameras (Scaramuzza, 
2014) around the rim to provide a detailed 360-degree visual understanding of the surroundings, 
eliminating blindspots. The video feeds are analyzed using algorithms such as image segmentation 
(Haralick & Shapiro, 1985) to classify terrain, identify hazards like cliffs and overhangs. The vision 
system builds a geospatially-registered point cloud and mesh model of the environment updated 
continuously with wearer movement. This allows assessing slope, proximity to drop-offs, safe paths, 
and other navigational insights.

Figure 1. The prototype design of the helmet

Figure 2. Apollo IMU, where inertial reference integrating gyros (IRIGs, Xg, Yg, Zg) sense attitude changes, and pulse integrating 
pendulous accelerometers (PIPAs, Xa, Ya, Za) sense velocity changes
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• GNSS: GPS and other GNSS provide an absolute geographical position fix, which helps build 
an accurate map of the surroundings and locate the climber precisely on it. This enables planning 
optimal traversal routes.

• IMU (Ahmad et al., 2013): The IMU uses accelerometers and gyroscopes to track the climber’s 
movement and orientation. This aids localization and mapping by complementing the cameras 
with information on movement and perspective. It can also detect falls by recognizing sudden 
accelerations.

• Barometer: The barometer measures atmospheric pressure changes to estimate altitude, 
complementing the visual mapping. This improves vertical positioning when visual references 
are inadequate.

The 360-degree vision achieves comprehensive hazard detection, the IMU tracks climber motion 
for localization, the GNSS provides precise global positioning to situate the climber on the map, and 
the barometer aids with altitude estimates when visual cues are limited. The combination enables 
robust situational awareness in challenging mountain environments.

System Integration
The diverse sensor suite enables the building of a detailed 360-degree model of the environment. 
The vision algorithms integrate footage from omnidirectional cameras queue depth and inertial data 
to the appropriate scene region. Then, the hazardous zones, navigation markers, and other real-time 
overlays are rendered on a compact heads-up display inside the helmet. The algorithm continuously 
analyzes the 360-degree camera feeds and is designed to be low latency to ensure the augmented 
environment view responds immediately to user movement and terrain changes.

When the helmet perceives an area of instability like loose rock, thinning ice, or a steep drop-
off, it marks the danger zone in the heads-up display. As the climber moves, these warnings remain 
geospatially fixed, allowing them to be visually tracked. The system can also provide audible alerts 
when in proximity to hazards. By constantly monitoring the scene, the helmet acts as a vigilant lookout 
for potentially deadly situations the climber could miss in the high cognitive load of navigation.

The combination of a 3D semi-dense map, motion tracking, and real-time hazard overlay 
allows navigating mountain faces while continuously assessing upcoming terrain and proximity 
to cliffs or crevasses.

Rugged design
The helmet employs a hardened design to handle the harsh conditions of mountaineering. The housing 
encasing the cameras, sensors, and other fragile electronics is impact-resistant and reinforced to 
withstand falls, stones, and compressive forces. The optics employ scratch-resistant glass lenses and 
hydrophobic coatings to maintain visibility in rain and snow. Internal components feature moisture 
protection, heat sinking, and shock absorption. The helmet maintains reliable operation across a 
broad thermal range, functioning equally well on frozen summits or under blazing sun. Automated 
self-tests validate all sensors and indicators to catch failures (Henry & Clarke, 1993). The helmet 
continues providing vital assistance even after harsh impacts or prolonged exposure by employing 
resilience engineering.

User data Collection and Privacy Considerations
The development of our smart helmet is grounded in a conscientious approach to user data collection, 
ensuring rigorous compliance with privacy standards and explicit user consent (Mertens, 2018). We 
employ robust anonymization techniques to safeguard climbers’ personal information, upholding 
their privacy rights. Simultaneously, the helmet’s real-time hazard analysis algorithms are designed 
to maximize user safety, meticulously balancing the dual imperatives of risk mitigation and privacy 
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preservation. Additionally, the Gaussian distribution-based machine learning scheme could be applied 
to anomaly detection and ensure the security of our data analysis processes (Dwivedi et al., 2021).

We must also address the critical aspect of data collection and sensor reliability. The integration 
of IoT-based sensors for big data collection, as discussed by Plageras et al. (2018), highlights the 
necessity of efficient data processing and analysis to enhance the functionality and reliability of the 
smart helmet. Similarly, the work of Chawra and Gupta (2022) on optimizing wake-up scheduling in 
3D-wireless sensor networks, and the efficient data collection scheme for underwater linear sensor 
networks proposed by Ahmed et al. (2022) underscore the significance of ensuring sensor robustness 
and data accuracy.

ALGoRITHM

To carry out localization, our approach initially involves implementing SLAM to construct a semi-
dense map. Subsequently, the map is divided into grids, and we compute a dangerous score for each 
grid. The subsequent path planning is founded on the computed grid graph utilizing the A* algorithm.

Figure 3 displays the whole SLAM and MSF process. The input to the algorithm is a stream 
of images from the 360 camera as it moves through the environment. The first step is to perform 
image projection to undistort those images according to camera intrinsic parameters, and feature 
extraction and feature matching are applied to get the poses between two keyframes via geometry-
based function essential matrix and fundamental matrix (Luong & Faugeras, 1996), followed by 
the triangulation to get the 3D map points. Furthermore, those expanded 3D map points and the 
estimated camera pose are fed back into bundle adjustment for further optimization (Triggs et al., 
2000). This incremental process repeats as new keyframes are acquired to build a consistent map 
while estimating the camera trajectory.

The optimized 3D map points and camera poses are combined with additional sensor data from 
other sensors using MSF techniques. This sensor fusion also allows for estimating the initial camera 
pose for the next keyframe, which is then used to triangulate and expand the 3D map (SemiDense 
Map) via features matched to previous keyframes through image projection.

Figure 3. The pipeline of the entire SLAM and MSF process
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In summary, image projection, bundle adjustment optimization, multi-sensor fusion, and 
triangulation are combined in a loop to generate an optimized 3D map along with estimated camera 
poses at each keyframe.

Image Projection
Map points can be projected into the 360 camera’s equirectangular image plane based on the currently 
estimated camera pose to provide a detailed 360-degree visual understanding of the surroundings. The 
projected pixel coordinates can then be matched to feature points detected in the equirectangular image.

To establish 2D-3D correspondences between features in the catadioptric omnidirectional 
camera system, Geyer and Daniilidis (2000) first proposed a four-step projection process to model 
the geometric relationship between a 3D scene point and its corresponding 2D pixel location in the 
camera image.

Consider a scene point P x y z= ( ), ,  in the mirror’s reference frame. For convenience, we assume 
the axis of symmetry of the mirror aligns with the camera’s optical axis, and the x and y axes of the 
camera and mirror are also aligned. Hence, the only difference between the camera and mirror 
reference frames is the translation along z.

Projecting the scene point onto the unit sphere:

P
P

P
x y z

b s s s
= = ( ), ,  

The point coordinates are then changed to a new reference frame centered in C = −( )0 0, , e :

P x y z
s s s s
= +( ), , e  

Figure 4. The image projection for the omnidirectional camera
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However, Geyer and Daniilidis’ fisheye projection model varies from camera to camera and 
depends on the field of view of the lens, and approximation of fisheye lenses by catadioptric cameras 
has limited accuracy.

To tackle that problem, Scaramuzza (2014) proposed a unified model that uses the Taylor 
polynomial to overcome the lack of knowledge of a parametric model for fisheye cameras, whose 
coefficients and degrees are found through the calibration process. Accordingly, the relation between 
the normalized image point m x y

m m
= ( ), ,1  and the unit vector P

s
 in the fisheye (mirror) reference 

frame can be written as:
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where r = +x y
m m
2 2 , Scaramuzza (2014) has also emphasized that polynomials of the third or 

fourth order can accurately represent all catadioptric and several types of fisheye cameras currently 
available in the market. The ability of this model to be used effectively with a diverse range of 
commercial cameras is the fundamental reason for its great future potential.

Feature Point detection (FAST)
Feature point detection extracts distinctive keypoints for tracking across frames. A commonly used 
detector is Features from Accelerated Segment Test (FAST). FAST (Mair et al., 2010) examines local 
pixel neighborhoods to rapidly identify high-contrast corners. This efficiency suits real-time SLAM, 
especially in complex mountain environments. Real-time performance is critical but challenging 
due to factors, such as variable lighting and terrain. FAST’s speed enables fast keypoint extraction 
despite these difficulties. By only considering local pixel circles rather than expensive smoothing.
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oRB descriptor
While FAST efficiently detects keypoint locations, we also need descriptors to characterize the local 
visual appearance at each keypoint. Some Robust descriptors can be used to facilitate matching 
keypoints between frames by representing the distinct image patch around each point.

A highly effective descriptor that complements FAST detection is ORB (Oriented FAST and 
Rotated BRIEF), which builds upon FAST to extract oriented FAST corners, followed by describing 
these keypoints using a compact binary string via the BRIEF (Binary Robust Independent Elementary 
Features) method (Calonder et al., 2010).

BRIEF compares pixel intensities in a smoothed image patch at predefined locations relative to the 
keypoint. The comparisons produce a bit string that summarizes the salient gradients. ORB modifies 
BRIEF to make it rotation-invariant for matching under viewpoint changes. Together, the oriented 
FAST detection and rotated BRIEF description in ORB provide a feature that is fast to compute, 
invariant to rotation, and robustly matched across frames. Moreover, those characteristics make ORB 
ideal for real-time SLAM in dynamic environments with continuously changing camera orientation.

Feature Matching
Descriptor matching between keyframes is essential for tracking visual features across different 
viewpoints in mountain visual SLAM. As the camera explores mountainous terrain, the perspective 
changes dramatically, causing the appearance of features to vary significantly across frames. The 
ORB descriptor vectors are compared using Hamming distance (Norouzi et al., 2012) to identify 
matches between keyframes.

We can establish a keypoint match between frames if the descriptors have a small Hamming 
distance, indicating they likely correspond to the same physical 3D point viewed from different 
mountain terrain perspectives. We can track the same features across multiple keyframes taken 
at distinct camera poses and lighting conditions by finding descriptor matches. This would allow 
incrementally estimating the camera motion and constructing a map of the mountain environment 
by tracking matches over sequential views.

Initially, we have two keyframes I
1

 and I
2

 that depict overlapping views of a scene. We can 
then establish 2D-to-2D correspondences between points in the two frames by leveraging epipolar 
geometry constraints to estimate the fundamental matrix F  and initial relative pose (Zhang et al., 
1995). For example, pixel P

1
 in I

1
 matches to P

2
 in I

2
.

Using these feature matching, we can compute the fundamental matrix F that encodes the 
epipolar constraint:

P FPT
2 1

0=  

Decomposing F  gives us the essential matrix E  and an initial estimate of the relative camera 
motion between the two poses P

1
 and P

2
.

By Single Value Decomposition E T R
x

= , where T  is the translation and R  is the rotation 
from frame I

1
 to I

2
. From this, we get our initial pair of camera matrices P

1
 and P

2
.

Next, we triangulate the feature matches to reconstruct 3D points X
j
 in the scene. For a matched 

pair of pixels P
1

 and P
2
:

p PX
j1 1

=  

p P X
j2 2

=  
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By back-projecting rays from the feature bearings in both frames, their intersection gives the 3D 
coordinate X

j
.

Repeating this process for all matches allows the construction of a map of 3D points corresponding 
to tracked visual features.

We now have a set of 3D-to-2D correspondences between reconstructed points X
j
 and their 

pixel coordinates in the keyframes.
As the camera explores new viewpoints I

n
, we can utilize the Perspective-n-Point (Lu, 2018) 

algorithm to estimate an initial pose P
n

 using established 3D-to-2D matches with points visible in 
frame I

n
.

Finally, bundle adjustment globally refines all camera poses P P P P
n1 2 3

, , , ,{ }  by 
minimizing the total reprojection error between the 3D points and corresponding observed 
pixel coordinates across all keyframes. This jointly optimizes the pose estimates to obtain a 
globally consistent reconstruction.

Back-end Fusion with GPS and IMU Pre-Integration

Every keyframe state at time t is defined as x p q v ba bw
t t t t t t
= 


, , , ,  compromising position p , 

orientation q  as a quaternion, velocity v , and IMU biases ba  for the accelerometer and bw  for 
the gyroscope.

IMU measurements between times t and t + 1 are pre-integrated into a relative motion increment 
z: t → t + 1 (Förster et al., 2017):

z t t p q v
t t t

: , ,→ + = 

1 ∆ ∆ ∆  

where Δ denotes the change in each state variable between t and t + 1 predicted by integrating the 
IMU. This pre-integration accounts for the IMU biases by including them in the state as:

∆ ∆p p ba bw
t t t t
= ( ),  

Figure 5. Triangulate to obtain map point depth
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When a GNSS measurement y
t+1

 arrives, it observes an absolute position that can constrain 
pose drift. Furthermore, the v

t+1
 is the pose stemmed from our visual SLAM bundle adjustment; we 

then incorporate this by minimizing the cost:

C p p p v p y p p P ba bw
t t t t x t t y t t t t t z
, ,+ + + ∑ + + ∑ + ∑

( ) = − + − + − − ( )1 1 1 1 1 1
∆  

Here .
å

 denotes the Mahalanobis distance (De Maesschalck et al., 2000) with covariance Σx 
for SLAM, Σy for GNSS (Global Navigation Satellite Systems) and Σz for the pre-integrated IMU 
increment. This optimizes over x

t
 and x

t+1
, adjusting the state estimate to best satisfy the constraints 

from both GNSS and IMU pre-integration. Critically, the pre-integrated IMU measurements are not 
recomputed, as the optimization only touches the biases ba

t
, bw

t
, avoiding unnecessary recalculations.

This way, GNSS global position measurements are fused with locally estimated pose increments 
through an optimization leveraging pre-integration. This provides globally accurate and locally 
precise state estimates.

In circumstances where GNSS suffers from intermittent errors caused by temporary obstruction of 
the satellites by mountains, groves, etc. and fails to achieve precise positional data, there is a possibility 
of experiencing drift in the vertical position estimation. To tackle this issue, adding a barometer can 
be utilized to measure atmospheric pressure. By incorporating pressure measurements, we can obtain 
a constraint for the altitude h from the z direction, thus enhancing the accuracy of pose measurements.

The barometer measures atmospheric pressure, providing an independent altitude estimate f x( )  
which convert the pressure signal to height value and may be varied according to a different model:

h f p
t t+ += ( )1 1

 

We can get the pose state by:

x p q v ba bw
t t t t t t+ + + + + += 


1 1 1 1 1 1

, , , ,  

We then fuse the barometer into the optimization, and minimize the cost:

C p p p v p y

p p P ba bw
t t t t x t t y

t t t t t z

,

,
+ + + ∑ + + ∑

+ ∑

( ) = − + −

+ − − ( ) +
1 1 1 1 1

1
∆ pp h

t t h+ + ∑
−
1 1

 

In summary, fusing barometer altitude GNSS, especially for vertical positioning, when GNSS 
references are impaired due to lack of internet connectivity. The barometer helps maintain 3D accuracy 
when external data is limited.

Normal Vector Calculation From the Semi-dense Map
To extract normal vectors from a semi-dense Point Cloud map, we first divide the 3D space into grids 
at a resolution that captures local surface elements. With the grid produced from the segmentation, 
the next step is analyzing each neighborhood’s point distribution by the covariance matrix.
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The core analysis (Sanchez et al., 2020) phase involves Principal Component Analysis (PCA) 
on each region. For each local point set P P P P

n1 2 3
, , , ,{ } , the 3x3 covariance matrix C

v
 is computed 

between the x y z, ,  coordinates.
C
v
 encapsulates the correlation structure of the surface points. Eigen decomposition of C

v
 yields 

eigenvalues l l l
1 2 3
, ,{ }  and eigenvectors v v v

1 2 3
, ,{ } . The eigenvector v

i
 paired with the minimum 

eigenvalue l
i
 corresponds to the axis of least variance, as the normal vector estimate.

Calculation of each Grids’ dangerous Score
After converting the mountainous terrain into grids and obtaining the normal vectors for each grid, 
the subsequent stage involves examining the data related to the normal vectors to evaluate the danger 
level. Various indicators of danger can be derived from the normal vectors, including multiple metrics:

• Incline angle: The angle between the normal vector and the global vertical axis. Steeper slopes 
generally denote a greater risk of falling or sliding. The dot product between the normal and 
vertical yields the cosine of the incline angle.

• Roughness: Measured by the variance of normal vectors within a grid. High variance implies 
an irregular, bumpy surface that can be treacherous.

• Edge proximity: Distances to nearby grids with substantially differing normals may mark a cliff 
or overhang. Smaller distances flag a potential edge hazard.

• Isotropy (Kamash & Robson, 1978; Rivlin & Ericksen, 1997): How close the normals are to 
an ideal plane normal. High isotropy indicates loose, unstable terrain like gravel or sand.

• Obstacle density: The number of distinct objects distinguished by separate normals. More 
obstacles mean more hazardous navigating and an increased chance of tripping.

To integrate these factors into an overall danger score D for each grid v, we propose a 
weighted function:

D w f A w g R R w h E C w k I V w l O
v v v v neighbors v v v v
= ( )+ ( )+ ( )+ ( )+−1 2 3 4 5

, , ,
vv( )  

where:

f A e
v

Av( ) = − −1 b  

Models with increasing risk with slope angle A
v

 exponentially, where β is a scaling factor:

g R R R
R

Nv v neighbors v
vn, −( ) = +1

 

Incorporates the roughness of neighboring grids R
vn

:

h E C
E

C
v v

v
v

, tanh( ) = + ( )1  
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Edge proximity E
v

 weighted by cliff score C
v
.

The cliff score C
v
 is computed as follows.

For each grid v, cast rays outward in directions (such as front or sides), and for each ray, find 
intersecting grids w via raycasting.

Compute dot product of v’s normal N
v

 and ray direction D.

If N D threshold
v
⋅ <  t  

C h N D
v v
= ∑ − ⋅( )



a∆ 1  

where Dh  = height difference between v and w, α is a scaling factor:

k I V
I

Vv v
v

v

,( ) =  

We use the ratio of isotropy to grid surface area as an indicator of loose terrain:

l O O
v v( ) = +( )log 1  

Logarithmic scale obstacle density:

A
v

= Incline angle 

R
v
= Roughness 

R
vn

= Neighbor roughness 

E
v

= Edge proximity 

C
v
= Cliff score 

I
v

= Isotropy score 

V
v

= Grid surface area 

O
v

= Obstacle density 

This danger metric integrates additional grid information like volume and cliff scores with 
non-linear transformations of the metrics to better model danger response and the exponential and 
logarithmic functions to help account for sensitivity and saturation effects.

The metrics can be normalized before combining based on expected value ranges. The weighting 
coefficients w

i
 are optimized per environment using techniques, such as grid search and cross-

validation against hazard data (Yan et al., 2022).
Once calculated for all grids, the danger scores are classified into qualitative levels like low, 

medium, and high. The environment map can be visualized with risk-coded colors to support planning 
safe navigation routes and activities. As the normal vectors get updated dynamically from new 
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SLAM mapping data, the danger scores can be recalculated accordingly, providing an up-to-date 
representation of the terrain hazards.

The Path Planning
Once the SemiDense Cloud map has been generated and the danger scores of each voxel have been 
determined, the environment may be represented as a weighted graph G V E D, ,( )  to identify the 
optimal path. The objective of this path-finding algorithm is not only to ensure the safety of 
mountaineers and minimize the distance traveled:

V v v v v
n

= { }1 2 3
, , , , is the set of grids 

E v v
i j

= ( ){ }, is the set of edges between grid pairs 

D e( )=danger score of e EÎ  

Dijkstra’s algorithm can then find the shortest paths on this graph. We adapt this to use A* search 
to focus on safety, which optimizes for the lowest total danger along the path (Hart et al., 1968). It 
uses a heuristic h v( )  that estimates the remaining distance to the goal based on Euclidean distance. 
This helps guide the search towards the goal efficiently. At each step, A* expands the grid v  with 
the lowest f v g v h v( ) ( ) ( )= + , where g v( )  sums the danger scores along the path from the start. By 
minimizing f v( ) , A* converges on the optimal path P*, minimizing total danger to reach the goal.

The initial path P* can be refined by smoothing waypoints and tuning the trade-off between 
danger and path length. As the environment changes, danger scores are updated dynamically, and 
P* is adjusted incrementally to remain optimal. Replanning only occurs when necessary to limit 
computations. During execution, the current danger is monitored along P*, and the path is aborted 
and replanned if thresholds are exceeded. This adaptation allows for responding to dynamic hazards.

Figure 6. The A* iteration
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In summary, A* search optimized for minimum danger is used to plan optimal safe paths. The 
path is refined and adjusted incrementally as the environment and danger scores change. Danger is 
monitored during execution, and replanning occurs if thresholds are exceeded.

eXPeRIMeNT ReSULT

The helmet system was tested in simulations and real-world environments, with experiments 
demonstrating robust capabilities in obstacle detection, 3D mapping, localization, and route planning 
for mountain navigation. Quantitative results showed improved localization accuracy by fusing SLAM, 
GNSS, and barometric data, while the system also consistently identified optimal safe traversal routes 
through analyzed terrain hazards.

We started the experiment in a real-world environment. Figure 7 is the moving object detection 
under this keyframe, and the semi-dense point cloud is then reconstructed from each keyframe, 
showcasing the helmet’s ability to create a detailed 3D representation of the mountain terrain, providing 
critical situational awareness. The following experiment highlighted the improvements in localization 
accuracy when fusing SLAM, GNSS, and barometric data. These enhancements significantly reduce 
position and orientation errors, vital for precise navigation in mountainous terrain. The route planning 
experiment demonstrated the helmet’s ability to calculate safe traversal paths by analyzing terrain 
hazards. It utilizes the generated grid graph to consistently find optimal minimum-risk routes, balancing 
safety and efficiency. Collectively, these experiments validate the smart helmet’s capacity to enhance 
situational awareness through real-time sensor data fusion.

The following are details for each experiment respectively.

Moving object detection
An essential capability demonstrated was precise moving object detection and image projection to 
distortion input from the 360-degree camera input. As shown in Figure 7, the system identified and 
tracked multiple people during mountaineering. By projecting image features onto the frame using 
the unified projection model, robust detection was achieved.

Localization Accuracy
The position errors show the drift as a percentage of the total 100m traversal distance. With SLAM 
alone, the position drifts 1.2m over 100m of travel, giving a 1.2% error. Adding GNSS reduces this 
to 0.8% over the same distance. Integrating the barometer further improves accuracy to 0.4% drift.

The orientation errors are measured in absolute degrees of deviation from the ground truth. 
SLAM has 4.5° drift, improved to 2.1° with GNSS and 1.2° with barometer added, where the GNSS 
provides periodic position corrections and the barometer constraints drift along the vertical axis. 
This results in more precise and robust state estimation in the challenging mountain environment.

Figure 7. Moving object detection
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Semi-dense Map Reconstruction
The reconstructed semi-dense point cloud provided a detailed representation of the mountain 
environment geometry. As depicted in Figure 8, the incremental bundle adjustment process leveraged 
matched features across keyframes to estimate camera poses and triangulate world points. This 
produced a geospatially registered 3D model reflecting the mountain structure.

Route Planning
The semi-dense 3D point cloud generated via SLAM was divided into grids, and we computed danger 
metrics, including slope, roughness, and proximity to cliffs. Figure 9 illustrates the resulting grid 
graph with danger color coding. The optimal minimum-risk route was identified using A* search 
optimized for safety. The system could consistently find safe trajectories, balancing hazard avoidance 
with traversal efficiency.

These results validate the helmet prototype’s ability to enhance situational awareness 
through real-time sensory data fusion. Combining computer vision, SLAM mapping, and 
environmental analytics provides a comprehensive platform for informed navigation in 
hazardous mountain regions.

Table 2. Localization accuracy with different sensor combinations

Condition
Position Error 

(m)
Orientation Error 

(deg)

Scene 1 Scene 2 Scene 1 Scene 2

Visual SLAM only 1.23 3.71 0.95 1.33

Visual SLAM + GNSS 0.87 2.69 0.74 0.81

Visual SLAM + GNSS + 
Barometer 0.43 2.10 0.59 0.63

Note: The values presented in this table represent the localization errors measured over a traversal distance of 100m. Scene 1 is located in Bodafon 
Mountain (Wales), providing a certain set of challenges and environmental conditions, while Scene 2 is situated in Garnedd Ugain Mountain (Wales), offer-
ing a different landscape and set of obstacles.

Figure 8. Semi-dense grid map reconstruction via SLAM
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CoNCLUSIoN

This innovative smart helmet prototype demonstrates promising capabilities in enhancing mountaineer 
safety through visual-inertial SLAM and Multi-Sensor Fusion. The main contributions of this work 
lie in its comprehensive framework, which incorporates algorithms to achieve precise localization, 
robust mapping, and safe path-finding in extreme terrains, ensuring that mountaineers can navigate 
safely even in the most challenging conditions. While further refinements are needed, the prototype 
showcases an essential step toward wearable enhanced reality assistance in hazardous alpine settings. 
The low cost of visual SLAM technology, compared to its LiDAR counterparts, presents an economic 
advantage, making it a more feasible option for large-scale production. Visual SLAM components 
potentially range around 50-500 USD, compared to over 2000 USD for LiDAR-based systems. 
Enhanced machine learning techniques, such as reinforcement learning, could be vital in optimizing 
system behaviors for user safety and comfort. The system could adapt and improve its performance 
over time by continuously learning from user interactions and environmental conditions, leading to 
a more intuitive and user-friendly experience.

However, our algorithm is dependent on clear visual conditions, and its performance could be 
compromised in fog, heavy snow, or low-light scenarios. Integrating multiple sensors and advanced 
processing capabilities demands significant power, potentially resulting in limited battery life. The 
helmet’s capability to collect and process vast amounts of data in real-time could lead to information 
overload, making it challenging for users to make quick and informed decisions.

The potential applications of this technology extend far beyond mountaineering, promising 
benefits across various high-risk activities and industries. In search and rescue operations, the 
helmet’s precise localization and mapping capabilities could significantly enhance rescue teams’ 
efficiency and safety when navigating challenging terrains. The construction and mining sectors could 
see improved worker safety with the helmet’s real-time situational awareness and hazard detection. 
Outdoor adventure enthusiasts, including rock climbers and backcountry skiers, could leverage the 
helmet for safer navigation in unfamiliar terrains.

Figure 9. Planned safe traversal route by A* search
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